Corneal Endothelial Cell Segmentation by Classifier-Driven Merging of Oversegmented Images

Juan P Vigueras-Guillen, Eleni-Rosalina Andrinopoulou, Angela Engel, Hans G Lemij, Jeroen van Rooij, Koenraad A Vermeer, Lucas J van Vliet

Onderzoeksoutput: Bijdrage aan tijdschriftArtikelOnderzoekpeer review

Samenvatting

Corneal endothelium images obtained by in vivo specular microscopy provide important information to assess the health status of the cornea. Estimation of clinical parameters, such as cell density, polymegethism, and pleomorphism, requires accurate cell segmentation. State-of-the-art techniques to automatically segment the endothelium are error-prone when applied to images with low contrast and/or large variation in cell size. Here, we propose an automatic method to segment the endothelium. Starting with an oversegmented image comprised of superpixels obtained from a stochastic watershed segmentation, the proposed method uses intensity and shape information of the superpixels to identify and merge those that constitute a cell, using support vector machines. We evaluated the automatic segmentation on a data set of in vivo specular microscopy images (Topcon SP-1P), obtaining 95.8% correctly merged cells and 2.0% undersegmented cells. We also evaluated the parameter estimation against the results of the vendor's built-in software, obtaining a statistically significant better precision in all parameters and a similar or better accuracy. The parameter estimation was also evaluated on three other data sets from different imaging modalities (confocal microscopy, phase-contrast microscopy, and fluorescence confocal microscopy) and tissue types (ex vivo corneal endothelium and retinal pigment epithelium). In comparison with the estimates of the data sets' authors, we achieved statistically significant better accuracy and precision in all parameters except pleomorphism, where a similar accuracy and precision were obtained.

Originele taal-2Engels
Pagina's (van-tot)2278-2289
Aantal pagina's12
TijdschriftIEEE Transactions on Medical Imaging
Volume37
Nummer van het tijdschrift10
DOI's
StatusGepubliceerd - okt. 2018

Vingerafdruk

Duik in de onderzoeksthema's van 'Corneal Endothelial Cell Segmentation by Classifier-Driven Merging of Oversegmented Images'. Samen vormen ze een unieke vingerafdruk.

Citeer dit